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Animal behavior can be characterized by the degree of responsiveness it 
has to variations in the environment. Some behavior rules lead to fine-tuned 
responses that carefully adjust to environmental cues, while other rules 
fail to discriminate as carefully, and lead to more inflexible responses. In 
this paper we seek to explain such inflexible behavior. We show that coarse 
behavior, behavior which appears to be rule-bound and inflexible, and 
which fails to adapt to predictable changes in the environment, is an 
optimal response to a particular type of uncertainty we call extended 
uncertainty. We show that the very variability and unpredictability that 
arises from extended uncertainty will lead to more rigid and possibly more 
predictable behavior. 

We relate coarse behavior to the failures to meet optimality conditions 
in animal behavior, most notably in foraging behavior, and also address 
the implications of extended uncertainty and coarse behavior rules for 
some results in experimental versus naturalistic approaches to ethology. 

1. Introduction 

Animal behavior can be characterized by the degree of  responsiveness it 
has to variations in the environment. Some behavior rules will lead to 
fine-tuned responses that carefully adjust to the environment. Other rules 
will fail to discriminate between environmental states, and will lead to 
coarser, more inflexible responses. There are a number of  reasons for 
inflexibility. For example, there may be limits on neurological capacity, or 
the complexity of  the environment may lead to excessive computational  or 
adjustment costs for a fine-tuned response. This paper argues that coarse 
behavior might also arise as the optimal response to the environment, that 
the very nature of  uncertainty might make it optimal to follow a behavioral 
rule that is not fully responsive to environmental cues. 

The existence of  inflexible behavior rules is apparent in comparing the 
rule-bound nature of  observed behavior with the flexibility predicted by 
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models of  optimal behavior. Models employing optimization techniques 
have met with a large measure of  success in explaining the behavior rules 
of two decisions that are critical for fitness: foraging (Stephens & Charnov, 
1982; Pyke, Pulliam & Chamov,  1977; Charnov, 1976; Cody, 1974) and 
reproduction (Charnov et al., 1981; McFarland, 1977; Steams 1976). These 
models inevitably involve simplification or exclusions, and are intended 
only as a simplified approximation of the complete optimization problem. 
But even so, the optimal rule often predicts more variation in behavior or 
a more extreme response than is observed (Jaeger & Barnard, 1981 ; Pulliam, 
1980; Janetos 1980a, b; Krebs et al., 1977; Goss-Custard, 1977; Perrins & 
Moss, 1975). This is the opposite of  what would be expected given the 
simplified nature of the models. When errors in the predictive accuracy of  
the model are due to simplifications, we should generally find that observed 
behavior displays unexplained variation, not unaccountable rigidity. 

We present a theory to explain coarse behavior. We show that inflexible 
behavior arises as a response to uncertainty, that the very variability and 
unpredictability of the environment leads to more rigid and possibly more 
predictable behavior. 

Animal behavior is governed by a world view that determines how 
information is perceived and the actions it elicits. This world view may be 
captured by the biologist within a model of  the world that delineates events, 
determines the probability the events will occur, and evaluates the con- 
sequences of alternative courses of  action. Of course, the models are not 
perfect. There will be some simplifications and omissions, which, it is hoped,  
will lead to only small errors. But in a complex environment, there is also 
some chance the model will be wrong in a fundamental  way and in a way 
that will lead to a large loss if the model is followed. 

There are always some logical possibilities that are beyond any world 
view; and that impose severe costs to the animal in following the responses 
dictated by the model. These may include events such as the emergence of  
a new predator,  a one-time climatic or environmental change, or the occur- 
rence of  some other unprecedented event--events  for which the species has 
no past experience or "genotypical  prior",  events that have never occurred 
in the course of  the species evolution but that it must somehow take into 
account. By their very nature, such events cannot be delineated and explicitly 
considered by the model. 

We term the uncertainty that is introduced by the possibility of  such 
events ex tended  uncertainty. Extended uncertainty is uncertainty about the 
very structure and assumptions of the model. It reflects the possibility that 
the environment may have features that are beyond the scope of  the model, 
that there may be events that can occur, or consequences to action that are 
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taken, which cannot even be delineated, much less assigned probabilities 
of occurring. 

Extended uncertainty is qualitatively different from uncertainty that can 
be incorporated into the behavioral model: Extended uncertainty cannot  
be represented by stochastic elements or error terms in the model, since 
any stochastic term must relate to specific events and be governed by some 
given set of  distributional assumptions. 

In this paper  we look at the effect extended uncertainty will have on 
optimal behavior  rules. We show that when there is extended uncertainty, 
the optimal behavior may be to ignore information about the state of  the 
environment,  so that the same action will be taken even when a change in 
the information received dictates, from conventional optimization tech- 
niques, that some other action should be taken. That is, in recognizing there 
is information beyond the scope of  the model, the agent will appear  to 
ignore information within the model. Such a behavior rule, which we term 
a coarse behavior  rule, will lead to rule-bound behavior, behavior which 
appears inflexible and which does not adapt to predictable changes in the 
environment. We explain coarse behavior as the appropriate response to a 
particular form of uncertainty and not as a response constrained from the 
optimum by an appeal to some information or adjustment costs (Janetos 
& Cole, 1981). 

Not  only may extended uncertainty exist between the animal and the 
environment,  it may also exist between the animal and the biologist modeling 
the agent's behavior. In this case, extended uncertainty may be thought of  
as unmodeled uncertainty. There may be events which have such infrequent 
occurrence that they are either ignored or perhaps never even observed by 
the biologist. Yet, as we will show, misspecifications of  this form can lead 
to radical qualitative changes in behavior. The model used by the biologist 
may be very close to reality, so close that errors in the model may not be 
observable, while the conclusions for behavior arising out of the model may 
vary greatly from the conclusions that would come out of  a true view of  
the world. 

When viewed in this way, the existence of  extended uncertainty and its 
implications for coarse behavior has some bearing on the question of  the 
value of  experimental versus naturalistic or ecological methods. In par- 
ticular, the biologist observing behavior in the laboratory environment may 
not be capable of  taking into account the full nature of  the uncertainty 
under which the animal is laboring. Indeed, the laboratory setting itself, 
rather than controlling the environment, may actually accentuate the exten- 
ded uncertainty of  the animal-- the  experimenter may be controlling more 
than he understands. We would argue that this extended uncertainty will 
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lead to increasingly coarse behavior  rules. This coarseness will naturally 
lead to the greater regularity in behavior  and the manifestations of  general 
principles in the laboratory environment  which have been quest ioned as 
laboratory artifacts (Rozin, 1976; Johnston,  1981). 

The next section of the paper  presents the concepts of  coarse behavior  
and extended uncertainty in more detail, and also gives the central theorem 
of  the paper,  that extended uncertainty may lead to coarse behavior  rules. 
The following section discusses the extended uncertainty model within the 
context o f  the conventional model for behavior  under  uncertainty,  and 
presents the necessary and sufficient conditions for behavior  to be consistent 
with optimal behavior  under  extended uncertainty. These conditions provide 
an extremely valuable tool for using the extended uncertainty model  in 
empirical work. 

In sections 4 and 5 we present some useful applications of  the extended 
uncertainty model.  We will apply the model to foraging behavior,  and to 
the question of  the value of experimental  and naturalistic methods in 
studying animal behavior. 

2. Optimal Behavior Under Extended Uncertainty 

(A)  T H E  C O N V E N T I O N A L  U N C E R T A I N T Y  M O D E L  

The conventional  model of  decision making under  uncertainty can be 
succinctly described as follows (Ferguson, 1967; Raitta, 1968): 

There is a set of  states of  nature S. An element s of  S completely describes 
the state of  the world. There is a set of  actions A that the agent may choose 
to take. Associated with each action a in A, there is a consequence C = 
c(a, s). The agent possesses a utility function U defined over  the con- 
sequences. 

The agent observes a random variable X, with the distribution of  X 
depending on the state of  nature s in S in a known manner.  The agent has 
a prior probabil i ty measure on the states of  nature S, and updates  the prior 
based upon an observation of  X. Thus an observation of X = x yields a 
measure p ( - I x )  on S. In this model the random variable conveys information 
about  the possible states. For example,  the variable X might be patch size, 
day length, or seed type. 

The rule d that maps  X into A is called a behavior rule or a decision rule, 
and the expected utility maximization assumption implies that the agent 
chooses a rule d to satisfy the canonical problem, for each x, find a d(x) 
in A such that ~ 

U(c(d(x), s))p(slX=x)=sup ~ U(c(a, s))p(slX=x). 
S~S  a ~ A  s¢~S 
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In this paper  we will be working with uncertainty models which share the 
same utility function U and which share the same sets (7, A, and X. In the 
canonical problem U appears  only in terms of  its value on the range of  c, 
so we can replace U by a function U defined on A x S, where U(a, s)= 
U(c(a, s)). That  is, we will identify uncertainty models by the four-tuple 
{ U, S, c, p}. It should be understood that A, C, and X have been suppressed 
in the notation, and that U(a, s) = U(c(a, s)). 

(B) COARSE BEHAVIOR RULES 

Coarseness  is intended to embody the idea of  inflexibility of  behavior.  
The concept  we wish to convey is that a coarse rule will be less responsive 
to changes in information.  I f  d~ and d 2 are two different behavior  rules, d I 
is said to be coarser than d2 if d~ is constant over all subsets on which d2 
is constant. This condition is equivalent to the existence of  a function f 
such that fod2  = dl, and is similar to the property that d2 is a sufficient 
statistic for d~. 

Put in more intuitive terms, if dl is a coarser  behavior  rule than d2, d~ 
will be less responsive to changes in information.  Coarse behavior  thus 
appears  as the failure to fully discriminate between different sets of  informa- 
tion, or the failure to fully react as dictated by the optimal  behavior  rule. 
(We will return to examples  of  this behavior  in section 4.) 

More formally,  if D is a class of  behavior  rules, then we say that d in 
D is the most  coarse rule in D if for each d '  in D there is a function 
fd, o d'= d. The coarseness of  a behavior  rule is then a question of  a partition 
of the information set X where X is the disjoint union of sets of  the form 
d~{a} as a ranges over  the action set A. The rule d is coarser than d '  if 
the parti t ion of  X induced by d '  is a refinement of  the partition induced 
by d. 

This definition is too strong to use as a necessary condition for one rule 
to be coarser  than another.  We may think of  this as a minimal condition, 
but there may be other cases where we would consider one action to be 
coarser than another.  It is possible to parti t ion the information space in 
other ways that would not fulfill this definition, but may still lead to an 
acceptable ordering of  coarseness. For example,  Figs l (a)  and l (b)  give 
two parti t ions of  the information space into decision rules. Figure 1 (a) gives 
a fine partit ion, a slight movement  in the information leads to a different 
action being used. Figure l (b)  gives a partition where only two actions are 
used, the information can vary far more without leading to a change in the 
action. Yet the partit ions of  Fig. l (a)  are not a refinement of  those of  Fig. 
l(b),  and so we could not apply the above definition to say the decision 
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FIG. 1. (a) The information space X is partitioned by the decision rule d(x) ,  leading to 
different actions being taken for slight changes in information. (b) The information space X 
is partitioned by the decision rule into only two actions. This decision rule may be considered 
more coarse than the one in (a), but the partition in (a) is not a refinement of it. 

rule that maps  the information space into actions in Fig. l (b)  is coarser than 
the decision rule employed in Fig. 1 (a). How coarseness is measured depends 
on the application,  the definition is embodied in the model. In the examples 
later in the paper  we will place sufficient structure on the problem to specify 
various coarse rules in more detail. 

We can define behavior  rules as being coarse in an absolute sense as well 
as in a relative sense. The most coarse behavior  rule is one that is constant 
over the subset of  X that represents that information set. I f  there exists a 
behavior  rule d in D such that for F a subset of  X, d ( - ) l  F is a constant  
function, then that behavior  rule is at least as coarse as any other element 
of  D over the range F. 

To understand the concept  of  coarseness, it is useful to think of  the action 
space being divided into two parts, state-specific actions and general actions. 
A state-specific action yields a large utility for a small number  of  states and 
a large negative utility for a large number  of  states. A general action need 
never yield large positive utilities, but suffers large negative utilities for only 
a small number  of  states. As long as information does not enable the agent 
to pinpoint the actual state s, and thereby yields sufficiently large prob- 
abilities of  large losses for the state-specific actions, the agent will pick 
from among the general actions. If  these general actions are few in number,  
and if there is a large subset of  information for which general actions are 
optimal,  then the resulting behavior  rule will be coarse. 

(C) THE CONCEI:rl" OF EXTENDED UNCERTAINTY 

The manifest  characteristics of  the conventional uncertainty model are 
that the state space S is exhaustive in categorizing all actions that can occur 
and that the consequence of  each action for each state is known. Further, 
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the associated probabilties are assumed to be known for every state. It might 
be argued that no model can be usefully developed otherwise. It might seem 
valueless to include some state which we know nothing about and to which 
we cannot  or will not assign a probability. For how can we say anything 
about something when we assume at the outset that it is something that we 
cannot say anything about? 

Still, it is not difficult to argue that the world is filled with such events. 
Any complex environment will have the potential for new and unanticipat- 
ible occurrences. Furthermore,  models are recognized as being less than 
complete representations of  reality. They are governed by a set of  specifica- 
tions and assumptions that might be wrong, and that might exclude some 
fundamental possibilities. It is hoped that such exclusions will not cause 
substantial errors, but there is always the probability, in a complex environ- 
ment, for a surprise which will be disastrous for decisions based on the 
model, and which, being unanticipated, cannot be included in the model, 
even in a stochastic form. 

We call the uncertainty which arises from such surprises extended uncer- 
tainty. Extended uncertainty arises from the existence of  unanticipated 
events which may cause substantial errors and losses in the decisions based 
on the model. 

Examples of  extended uncertainty might include the introduction of  a 
new and novel predator,  a disease that destroys a principle food source 
(when the food source has always existed in abundance before),  or the 
introduction of  a chemical by man into a pristine environment. All these 
could be unanticipated, and may not be considered explicitly in decision 
making, much less be given a probability of  occurring. Other examples 
might be the eruption of  a volcano for a species that has always been in a 
geologically stable setting, or a one-time climatic change. 

An important  characteristic of  extended uncertainty is that the animal 
cannot adapt  to the surprise events before its consequences are felt. Adapta- 
tion implies the event has been incorporated into the behavioral model (or 
the model has been adjusted to include the event), and it is then no longer 
a representation of  extended uncertainty. For  example, if, as the animal's 
jungle environment changes to desert, the animal can update his behavioral 
model to successfully escape serious consequences, the climatic change 
does not represent extended uncertainty, even though it was a one-time 
unanticipated event. Once an event occurs and the consequences are real- 
ized, an animal may update its behavior to take it into account. The event 
will then move over into the conventional model. But the realization of  the 
surprise will also increase the animal's awareness that other, yet unantici- 
pated events may also occur. The important characteristic of  these unantici- 
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pated events is that they have important  implications for behavior,  but 
cannot be explicitly made a part of  the animal 's  model of  behavior. By 
contrast, a predator  which strikes with no warning, but which is known to 
exist in the environment,  would fit in a conventional uncertainty model.  
The realization of the e" mt  might be unanticipated,  but the state of  being 
attacked by the predator  can be delineated, and a probabil i ty can be assigned 
to it. 

We can summarize the concept of  extended uncertainty as follows: First, 
there is a non-zero probabil i ty of  an event occurring. Second, if this event 
occurs, it will lead to a substantial loss for behavior  that is based on the 
conventional optimization criterion. Third, the event cannot  be anticipated 
or even delineated in the behavioral model (that is, it has zero support  in 
the prior of  the model) ,  and there is no opportuni ty  for adaptat ion before 
the consequences of  the event are realized. 

(D)  T H E  C O A R S E N E S S  O F  O P T I M A L  B E H A V I O R  R U L E S  U N D E R  

E X T E N D E D  U N C E R T A I N T Y  

The agent 's  belief that its world view is incorrect is to some extent 
dependent  upon what it observes. Therefore to each action a and element 
of  information x, the agent is assumed to assign a value H(a, x). This value 
is a measure of  the agent 's  anxiety in taking action a when x is observed, 
arising from its belief  there is more to the world than it perceives. The agent 
then seeks to maximize U(a, s)p(slx)+H(a, x). H(a, x) may itself be a 
function of  U ( a , . ) ,  the collection of  distributions of  p(.Ix), and the 
distribution of X given that x is observed. 

If  H(a, x) is independent  of  x, and thus can be written as H(a), then it 
might appear  that the utility function could be redefined to be U(a, s)+ 
H(a), and we could approach  the question of  uncertainty of  world view 
through a respecification of  the conventional  uncertainty model. However,  
this is not the case, since U(a, s)+ H(a) is not a measure of  the utility that 
is obtained when action a is taken and state s occurs. That value is given 
by U(a, s). The function H ( . ,  • ) is a s tatement of  the uncertainty arising 
from the belief  the model is unaccountably incomplete  in its characterization 
of the world. The model cannot  be expanded to include H ( - ,  .). For any 
expansion or respecification of  the model,  there is assumed to exist a residual 
uncertainty on the part  of  the agent that that model still does not capture. 
The following lemma shows how the extended uncertainty arising from an 
uncertain world view can lead to a restriction in the set of  actions contained 
in the agent 's  behavior  rule. 
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Lemma 1. Given the uncertainty model { U, S, c, p}, suppose there is a 
number  M such that supa,sU(a,s)<-M<oo.  For a real number  r, let 
A(r )={a:  infs U(a, s ) >  r}, and suppose for some ~, A(~) is not empty.  Let 
e be a positive number  and for some r <  ~ let K = (M - r)/e. I f  H(a, x) is 
set equal to K inf, U(a, s), then the optimal  behavior  rule d under  extended 
uncertainty satisfies the property that for all x, a~(x) is in A ( r - e ) .  (All 
proofs are presented in the appendix.)  

Restricting the set of  admissible actions will naturally lead to a coarse 
behavior  rule. As we discussed in section 2(a),  the most  coarse behavior  
rule is one that is a constant function, one that does not respond at all to 
changes in information.  The following theorem shows that extended uncer- 
tainty can lead to this degree of  coarseness. 

Theorem 1. I f  for some r and positive e, A(r) = A ( r -  e) = {a0}, then there 
is an extended uncertainty model U(a, s)+ H(a)  where the optimal  rule is 
constant. 

3. The Relationship Between Optimization Under Extended Uncertainty and 
Optimization in the Conventional Uncertainty Framework 

The behavior  rule the agent follows must not only be appropr ia te  for its 
model,  but must  also be a good rule for perturbat ions of  that model induced 
by the unant icipated shifts in world view. Intuitively, we argue that the set 
of  actions that can be good for a broad set of  possible models  is smaller, 
and therefore the extended uncertainty will lead to a behavior  rule that is 
coarse. Put another  way, the finer the behavior  rule, the more it depends 
on the correctness of  the specification of  the model. I f  the agent believes 
the world may behave according to any one of  a number  of  models,  then 
an observer at tempting to explain an agent 's  actions by only one of  these 
models will find the agent 's  behavior  rule to be invariant to information 
which, f rom the observer 's  perspective, should elicit a more fine-tuned 
adjustment.  While the nature of  extended uncertainty precludes the agent 
from actually delineating the possible models,  this way of looking at the 
relationship between extended uncertainty and coarse behavior  is fruitful 
in relating the optimization problem under  extended uncertainty to the 
optimization problem of  the conventional uncertainty framework.  

(A) A STATE PREFERENCE FRAMEWORK FOR EXTENDED UNCERTAINTY 

We can formalize the concept  of  extended uncertainty within the state 
preference f ramework by representing the state space as a Cartesian product  
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S x T, where S represents the states as far as they can be delineated in the 
model,  and T represents those states that are unanticipated,  and that are 
outside the specifications of  the model. With only a minor  loss in generality, 
we can let T = {0, 1} where t = 0 is the "no  surprise" state where the agent 's  
model is correct, and t = 1 is the realization of an unanticipated event. 

We will make a distinction between the view held by the agent and the 
view held by the observer who is modeling the agent 's  behavior. The agent 
is assumed to recognize the existence of  extended uncertainty. That  is, the 
agent recognizes surprises do occur, and that the model or world view it 
holds may be violated in unanticipated ways. The observer shares the same 
model as the agent when the agent restricts its model to t = 0, and fails to 
recognize the potential  for the model 's  failure. The agent recognizes a t = 1 
state exists, but has no information about  it to add to the model,  while the 
observer explains behavior  as if the model he holds is a complete description 
of  the world (once the error terms that are possibly built into the model 
are considered).  In short, the agent shares the same model as the observer,  
but with a recognition of  the possibility of  mis-specification. Intuitively, we 
can view the fine adjustments expected by the observer as an artifact of  the 
observer 's  insistence that the optimization decision is made strictly on the 
basis of  the world view embodied  in the model.  

(B) T H E  D E C I S I O N  M A K I N G  P R O B L E M  F R O M  T H E  P E R S P E C T I V E  O F  T H E  

O B S E R V E R ,  A G E N T ,  A N D  O M N I S C I E N T  P L A N N E R  

An omniscient  optimizer, an optimizer who knows the nature of  the t -- 1 
states and their associated probabilities, will choose a behavior  rule that 
solves the problem 

max E 2 p(s, t[ x) U(a, (s, t)) 
a 

s l 

where p(s, t lx) is the conditional probabil i ty for S and T conditional on 
X = x .  

The observer labors under  the belief that he is proceeding as an omniscient  
optimizer, but in fact his knowledge is limited to the states (s, 0). He 
characterizes the optimal  behavior  rule by solving the problem z 

max E p(s Ix) U(a, (s, 0)). 
a s 

The observer may be wrong but cannot  fully adjust the model for these 
possibilities. The agent may be wrong but knows it may be wrong. The 
agent will follow a model  that allows for surprise events, even though those 
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events can be monitored only through their relationship to S, if at all. To 
illustrate the optimal behavior rule for the agent, imagine there is an 
omniscient planner who knows the true model described by the complete 
state space S x T, and knowing this true model must derive a behavior rule 
to hand down to the agent. (Strictly speaking, the omniscient planner  is 
only "quasi-omniscient",  since he is assumed to know the true model,  but 
not which state in the true model will be realized. That is, the omniscient 
planner can delineate the T's, and thus has resolved the extended uncer- 
tainty, but still faces the conventional uncertainty for the complete model 
as represented by the states S x T.) 

The omniscient planner is clearly in a position to hand down the optimal 
rule to the agent. There is a problem in allowing the agent to use this rule, 
however. Doing so will violate the core of  the extended uncertainty para- 
digm, since this rule conveys all the necessary information to eliminate the 
surprise of  the states with t ~ 0. To be consistent with the assumptions of 
extended uncertainty, the rule the omniscient planner hands down to the 
agent must be restricted so as not to require or contain any information the 
agent does not already have. That is, the omniscient planner must find a 
behavior rule that will maximize the expected utility of  the agent subject 
to the constraint that the rule be an insufficient statistic for T, i.e. that it 
gives up no new information about T to the agent. The omniscient planner 
can use the full information set to construct the rule, but the resulting rule 
cannot convey any more information to the agent. A sufficient condition 
for a behavior rule d to be admissible for an omniscient planner is for there 
to exist a function f(a, s) such that for all x 

~. f(  d(x), s)p(slx) ~- ~ f(a, s)p(slx) 
x s 

for all a in A. In particular, a function f (  ) used by the omniscient planner 
might be 

f(a, s) =~ U(a, (s, t))p(tls). 
t 

The rule of  the agent, then, will be to solve the problem 

max ~.. ~ U(a,(s, t))p(t[s)p(s Ix). 
a s t 

If  x gives no information about t, i.e. if p(s, tlx)=p(slx)p(tls), then the 
rule arising from the solution to this problem will be the same as the 
omniscient planner 's ru le)  Since the possible variations in T only appear 
through S, they will be unobservable to the observer. 

The constrained rule dope(x) will be the optimal rule for the agent given 
the existence of  extended uncertainty. It is the rule the agent would choose 
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if it could "peek"  at the true model in formulating its behavior  rule, but 
then had to act "as i f"  it had not seen any of  the information set implied 
by t ~ 0, i.e. it then had to design the behavior  rule it would follow to be 
consistent with an optimization problem that could have arisen out of  the 
limited information set. The distinction of  dope is that it is the optimal  rule 
relative to the extended state space when the behavior  rule must  be based 
only on the limited knowledge given by the agent 's  information set. 

Note that the observed states of  the world can have an effect on the 
perception of  extended uncertainty. Since the probabil i ty of  surprise states 
T is condit ioned on the observed states S, unanticipated changes in the 
environment  will lead to an increase in extended uncertainty. 

(C)  C O N S I S T E N C Y  O F  B E H A V I O R  W I T H  M O D E L S  O F  E X T E N D E D  

U N C E R T A I N T Y :  N E C E S S A R Y  A N D  S U F F I C I E N T  C O N D I T I O N S  

In the conventional  uncertainty model ,  the behavior  rule of  an expected 
utility maximizer  must satisfy conditions which, at least in principle, are 
subject to empirical verification. 4 I f  the behavior  rule of  the agent does not 
satisfy these conditions, is it possible to determine if the behavior  rule could 
have arisen from expected utility maximization in an extended uncertainty 
model that is a perturbat ion of the observed conventional uncertainty 
model?  For  the concept  of  extended uncertainty to lead to a positive theory 
with empirical content, there must be a way of  distinguishing those behavior  
rules that, while inconsistent with expected utility maximization in a conven- 
tional f ramework,  still are consistent with expected utility maximizat ion in 
an extended uncertainty framework.  The following two theorems present 
the necessary and sufficient conditions for a behavior  rule to have arisen 
out of  an extended uncertainty model. 

For each action a in the range of the behavior  rule d, let Ra = {x: d(x )  = a 
and such that for any a ' ~  a, ~ (U(a ,  s, t ) -  U(a',  s, t ) ) p ( s l x )p ( t l s )>O } .  
Let Q, be the convex hull of  the probabil i ty measures {p( .  Ix): x e Ra}. 

Theorem 2. A necessary condition for d to be consistent with expected 
utility maximizat ion in an extended uncertainty model  where the data x 
gives no information about  t, is that for all a, a '  in A with a ~ a', Q~ c~ Qa, 
is empty. 

The intuition behind this theorem is that  if an action is optimal  for any 
point in the convex hull of  the conditional probabil i ty measure,  then it must 
be optimal for all points in the convex hull. Therefore,  a' cannot both be 
in Q~ and also not lead to the same expected utility as the optimal  action 
a. For example,  if an action a is optimal when p ( .  Ix) = p  and also is optimal  
when p ( . I x ) = p ' ,  then a necessary condition for the decision rule to be 
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consistent with an extended uncertainty model is that the action a also 
optimal for any p ( - Ix )  between p and p', i.e. for any p "=  a p + ( 1 -  a)p'. 

The sufficient condition is similar to the necessary condition, but rather 
than requiring a null intersection for the convex hull of any two actions, 
the sufficient condition requires the convex hull Qo and the union of  the 
convex hulls associated with all other actions to be disjoint. For a given 
behavior rule d, let Do be the set of  x in X with d(x)=a, ( D o =  
{xEX: d(x)=a}), let Ga be the closed convex hull of the conditional 
probability measure p ( . I x )  on S where x is in Do, ( G o =  
CONY {p(-IX): x C Do}), and let /4o be the closed convex hull of  the union 
of  all the Go, where a '  is not equal to a, (/to =CONV ~..)o,~,o Ga.). 

Theorem 3. A sufficient condition for d to be consistent with expected 
utility maximization in an extended uncertainty model is that for each a in 
A, Ga and /4, are disjoint. 

The remarkable feature of  the necessary and sufficient conditions is that 
they are, at least in principle, empirically verifiable to the observer, even 
though the observer is limited to the conventional uncertainty model. That 
is, the observer can verify that a behavior rule is consistent with optimization 
within an extended uncertainty model even though he cannot know anything 
about its nature. The extended uncertainty paradigm thus contains some 
of  the essential properties to lead to a positive theory for the scientist. 

4. An Example of the Extended Uncertainty Framework 

A number  of  examples of  coarse behavior can be found in the literature 
on optimal foraging and reproduction. The question of clutch size is an 
important  and widely studied application of  the tools of optimization to 
animal behavior (Lack, 1947, 1948; Klomp, 1970; Stearns, 1976, pp. 12-18). 
It also is one example of  an apparently coarse behavior rule. Perrins & 
Moss (1975) found that the great tit does not increase its clutch size in years 
of high food availability to the extent predicted to be optimal. In extreme 
cases, an optimal brood size of 18 was predicted while the brood size 
observed in the field averaged only 8.8. While they present a number of 
possible reasons for changes in observed clutch size being lower than that 
predicted by their model, such behavior may also be viewed as coarse 
behavior. 

Optimal foraging behavior also gives a number  of  instances of  coarse 
behavior, where, for example, animals fail to choose exclusively from the 
food that leads to the maximum nutritional intake. This behavior is illus- 
trated by the failure of  the great tit to forage according to 0-1 behavior 
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(Krebs et al., 1977), and the failure of the red-backed salamander to fully 
differentiate between small and large flies in diet (Jaeger & Barnard, 1981).5 

In this section, we will present a hypothetical case study of foraging 
behavior to give a more detailed illustration of the process of modeling and 
applying the concepts of coarse behavior and extended uncertainty. We 
will also provide a numerical example of the use of the necessary and 
sufficient conditions developed in section 3(¢). The purpose of this example 
is to help provide a bridge between the theoretical development of the paper 
and the empirical tests and applications of its results. 

Consider an animal that must decide whether to continue foraging in its 
present location, or travel to another location to forage. This decision has 
been treated in a number of papers on stochastic foraging which concentrate 
on developing optimal stopping rules for foraging in a given patch, (Oaten, 
1977, Green, 1980, 1984). The animal is confronted with a trade-off between 
spending time seeking food and spending time avoiding predators. This 
trade-off is similar to that used in the stochastic foraging model of 
McNamara & Houston (1980). We assume the further the animal travels 
from its current location, the greater the risk from encountering a predator. 
The animal must trade off the relative security of staying in its current 
foraging patch, or traveling to another, undepleted, patch with higher risk 
but with higher abundance of prey. The decision of time spent foraging is 
then a function of the animal's beliefs concerning prey density and the 
predator population. 

We can summarize this situation in the following model: 

States o f  nature 

The states of nature involve the Cartesian product of the density in the 
current patch relative to other undepleted patches and the density of 
predators. To simplify the analysis, we look at two possible states for 
predator density and three possible states for relative prey density. 

S={O, 1} x{1,2,3} 

where (n, m) e S has the following interpretation: 

n = ()---the predator density is high 
1--the predator density is low 

m = O--the current patch has prey density equal to or better than the 
average of other patches 

1--the current patch has prey density that is between 
75% and 100% of the average of other patches 

2--the current patch has prey density that is less than 75% 
of the average of other patches. 
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Actions 

The actions that are available to the animal are the distances to travel in 
searching for prey. We will only consider two possible actions. 

A={0 ,  1} 

where a c A has the following interpretation: 

a = 0-- forage  in the present patch 
1--travel to forage in a new patch. 

Information set 

The animal may be expected to know the distribution of  prey in an 
undepleted patch and the distribution of prey in the current patch from 
past experience, and gain an estimate of the density of  predators from the 
number  of  predators it has viewed over the past month. We will represent 
the animal's assessment of  this information in two measures, forming the 
two-dimensional information set: 

X = { 0 ,  1,2 . . . .  ,10} x{0, 1,2} 

where (x, y ) ~  X is interpreted as follows: 

x = a measure of  the predator density, the higher x, the 
greater the predator density 

y = a measure of relative prey density, the higher y, the 
greater the prey density. 

As with the other specifications in this example, the indexing from 0 to 10 
for x and from 1 to 2 for y is arbitrary. Any number  of  indexes and measures 
are possible. 

Probability function 

P~x,y~(S~, s2) is the probability that the animal perceives state (s~s2) to 
occur given that an element (x, y) of the information set is observed. 

We will assume the following concerning the probability function P~x,y) 
1. P~x.y)(Sl, s2) = 0 if y ~ s2. 
2. Ptx.y)(s~, y ) =  Qx(s~), where Qx is a probability function on {0, 1}. 
3. Q~(1)> Qx, (1) i f x > x ' .  

Utility function 

The utility function will have the state of  nature and the action of  the 
animal as its arguments: 6 

W =  W(a, (s,, s2)). 
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These functions need not be specified completely, but only some properties 
need to be specified to ascertain the properties o f the  resultant decision rules. 

Based on the functions that are postulated, the optimal decision rule d* 
can be computed.  The action a will be taken by the optimal decision rule if 

1 2 1 2 

~'. ~ W[a, (s,, s2)]Pix.rj(S,, s2)>- E • W[a', (s,, s2)]P(x.y)(s,, s2), 
sj = 0  s2=0  s I =0  s2=0  

where a' ~ a. 
Suppose, as is often the case, empirical studies show that the actual 

decision rule is given by a strictly determined rule d where d ~ d*. A rule 
d is called strictly determined if, whenever d(x) = a, then the agent strictly 
prefers action a whenever x occurs. An agent will be observed not to have 
a strictly determined rule if ditterent occurrences of the same datum x are 
associated with more than one action. The problem confronted by the 
biologist is to determine if d is consistent with some extended uncertainty 
model;  that is, if the deviation of  behavior from the decision rule that is 
optimal in a conventional uncertainty model could have arisen from optimal 
behavior in an extended uncertainty setting. Utilizing the results of  the 
previous section, this question can be answered for this example by checking 
the following conditions 

Condition 1. If  there exists x, x', x" in {0, 1, 2 , . . . ,  10} and y in {0, 1, 2} 
with x < x ' < x "  such that d(x , y )=d(x" , y )  but d ( x ' , y ) # d ( x , y ) ,  then d 
does not arise from an extended uncertainty model. 

Condition 2. If for all y in {0, 1,2} and x, x', x" in {0, 1, 2 , . . . ,  10} with 
x < x ' < x " ,  d ( x , y )=d(x" , y )  implies that d ( x ' , y ) = d ( x , y ) ,  then there 
exists an extended uncertainty model with d as the optimal decision rule. 

Note that condition 2 is essentially the converse of condition 1. These 
two conditions are demonstrated in the Appendix. 

As an illustration of these conditions, if, for any measure of  prey abun- 
dance, the animal follows a decision rule of  continuing to forage in the 
current patch when the measure of  predator  density, x, is equal to 9, and 
also follows the same decision rule when the measure of predator density 
measure is equal to 6, then for the decision rule to be consistent with an 
extended uncertainty model, the animal must also forage in the current 
patch if the measure of  predator density is between 6 and 9. 

This illustration can be looked at in terms of  the probabilities as well. In 
this example, there is a higher probability of  encountering a predator the 
higher the measure of predator density. If  the animal pursues an action 
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when the probability of  encountering a predator  is p and also does so when 
the probability is p', then for the decision rule to be consistent with an 
extended uncertainty model, the animal must continue to pursue that action 
if the probability of  encountering a predator  is anywhere in between p 
and p'. 

Conditions 1 and 2 represent the necessary and sufficient conditions for 
the observed decision rule to be an optimal rule for some extended uncer- 
tainty model. That is, if Condit ion 2 holds, then we cannot dismiss the 
possibility that the animal is laboring under extended uncertainty, and is 
employing an optimal decision rule given the extended uncertainty, even 
though its behavior may appear  to be suboptimal from a conventional 
optimization standpoint.  

5. Experimental Intervention versus Naturalistic Observation: 
The Implications of Extended Uncertainty on 

Ethological Methodology 

(A)  T H E  L A B O R A T O R Y  AS A G E N E R A T O R  O F  E X T E N D E D  U N C E R T A I N T Y  

By its very nature, there is a high potential for the observer to miss the 
critical element extended uncertainty can play in behavior. This begs the 
question of  what scientific procedure will minimize the errors that can arise 
from attempting to model behavior when there is extended uncertainty. 

Obviously, the best approach is to view the animal from an omniscient 
perspective, with complete information about the environment. Since what 
is regarded by the animal as extended uncertainty is conventional uncer- 
tainty to the omniscient observer, the observer can follow the constrained 
omniscient planner 's problem described in section 3 to model the animal's 
behavior. 

The surprise events that make up extended uncertainty occur infrequently 
or without repetition, making it difficult to even approach the perspective 
of  the animal in the field, much less approach the omniscient perspective, 
without having a deep and intimate understanding of the ecology. And it 
is likely the ecology that is most complex, and hence is the most difficult 
to fully understand,  is also the one that will display the greatest level of  
extended uncertainty. 

In contrast to field observation, the laboratory setting presents an apparent  
opportunity to take on the omniscient planner 's  perspective. It might be 
argued that the nature of  uncertainty is under  the control of  the experimenter. 
The usual laboratory experiments for evaluating behavior under uncertainty 
are careful to filter out any surprise events, and use repeated trials to teach 
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the subject the distribution of  events and their consequences. They therefore 
appear to fit squarely in the realm of conventional uncertainty. 

However, it can clearly be argued that laboratory studies can be construc- 
ted which generate extended uncertainty for the subject in a manner  that 
is under the control of  the experimenter, thereby assuring his omniscient 
role. In general, this would be done by introducing one-time surprise events 
which are outside of the experience and expectations of  the subject. An 
increase in the number of  surprises will convey information on the extent 
of  extended uncertainty. The state variable s leads to a probability assess- 
ment for the occurrence of  surprise events, that is, a change in x will induce 
a change in p(slx), which will in turn induce a change in p(tls). The 
probability of  a surprise state, T =  1, will increase, and the existence of  
coarse behavior will increase with it. One might therefore think the experi- 
mental setting offers the ideal vehicle first for guarding against the introduc- 
tion of coarse behavior through extended uncertainty, and second, for 
testing the hypothesis that extended uncertainty will lead to coarse behavior. 

Unfortunately,  it might equally be argued that the experimenter,  in trying 
to control all aspects of  the environment, is actually controlling more than 
he can realize. For example, the very nature of  the laboratory environment,  
being so far removed from the natural environment of  the subject, and 
being removed from it in a way that the subject may have never before 
encountered,  (at least in genotypical terms), may serve to heighten its 
perceptions of  extended uncertainty. The tasks and the reinforcements set 
before the subject, often unrelated to those it faces in nature, may do 
likewise. The result may be an increase in the tendency toward coarse 
behavior in the laboratory setting. Indeed, one might wonder  if inconsisten- 
cies which appear  between laboratory results and those in the field (Lea, 
1979), or which seem counter  to our general perceptions of human behavior 
(Tversky & Khaneman,  1981) are in part the result of  the experimenter  
failing to match in the laboratory setting the nature of  the extended uncer- 
tainty which the subject must face in its normal habitat. 

A number  of  phenomenon typical to the experimental setting suggest an 
increase in coarse behavior in the laboratory. Perhaps the most dramatic 
illustration is that of  experimental neurosis. Experimental neurosis is charac- 
terized by a rigidity or insensitivity to information. The "neurosis"  is induced 
by a stimulus which is beyond the subject's control of understanding. For 
example, giving unescapable shock led dogs to fail to respond to the 
opportunity to escape when such an opportuni ty was later presented 
(Overmier & Seligman, 1967; Overmier, 1968). Dogs given very difficult 
problems were found to have a marked reduction in their reaction to stimulus 
(Pavlov, 1928). Appetitive discrimination deteriorated in rats when uncon- 
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trollable shocks were administered, and in dogs when the stimulus previously 
associated with rewards and no rewards were administered randomly 
(Hearst, 1965). These experiments, all cited by Seligman (1975) as examples 
of learned helplessness, also may serve as examples of extremely coarse 
behavior resulting from the extended uncertainty induced by the experi- 
mental environment. In all of these cases, the stimulus that brought on the 
inflexible behavior was outside the world view of the subject, in the sense 
that it was never encountered in nature, and was not internal to any model 
of the world the animal would have been able to develop. The stimulus in 
each case was an unanticipated event, divorced from past experience. The 
resulting inflexibility, failure to respond to stimulus, and lack of discrimina- 
tion may all be viewed as examples of coarse behavior. 

Whether the ability to control the laboratory outweighs the extended 
uncertainty induced by the laboratory is an empirical question, and one 
that no doubt will be answered in different ways for different experiments. 
However, even if experimental intervention does result in an increased sense 
of extended uncertainty in the subject, and thereby elicits a more coarse 
response, this result is likely to go unnoticed. This is because coarse behavior 
is allied with the regularity of behavior which is a premise of the experimental 
approach to ethology, and may therefore appear to be consistent with the 
expectations of the experimenter. 

For example, the conflict between the naturalistic-ecological method and 
experimental method in learning theory hinges largely on the question of 
whether behavior can be described by global theories, theories that reflect 
a regularity and a reproducibility that carries over from one task to another. 
The tasks in the laboratory environment inevitably differ from those the 
animal faces in nature. The experimental setting can therefore only illumi- 
nate animal behavior if the principles of learning are not role specific, i.e. 
if there are regularities of learning that carry over from one task to another. 
Otherwise, "studying rats in T-mazes is about the surest possible way to 
learn nothing at all about anything--except perhaps rats in T-mazes" 
(Schwartz' commentary to Johnston (1981)). 

If the laboratory induces extended uncertainty, and this in turn leads to 
coarse behavior, then the regularity observed in the experimental setting 
may be no more than a laboratory artifact. This possibility can be tested, 
since the regularity introduced by coarse behavior should differ in noticeable 
ways from the regularity of behavior that would be elicited by a global 
theory of behavior. For example, coarse behavior should lead to rigidity 
which exceeds what would appear optimal given the amount of information 
available to the agent. And indeed, at least in learning theory, the regularity 
in behavior in experiments at times does exceed that predicted by theory. 
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For example,  the well-known experiments by Garcia,  Ervin & Koelling 
(1966) show a regulari ty. that  contradicts the principle of  equivalence of 
associability in general process learning theory. 

While Theorem 1 shows the essential relationship between extended 
uncertainty and coarse behavior,  in the present context it is useful to suggest 
ways extended uncertainty can come into the problem that would not be 
noticeable to the observer. Can extended uncertainty enter at a level so 
subtle as to be unnoticed by the experimenter,  and yet have an effect which 
would significantly alter behavior  from that predicted by the conventional 
model? How much extended uncertainty is enough to lead to a noticeable 
restriction in the set of  actions, and therefore to a noticeable increase in 
the regularity of  behavior?  We will now address these questions more 
formally. 

(B) T H E  A P P A R E N T  R E G U L A R I T Y  O F  B E H A V I O R  A R I S I N G  F R O M  

U N O B S E R V E D  E X T E N D E D  U N C E R T A I N T Y  

Recall the state preference representation" of  extended uncertainty 
described in section 3, where the states are defined by the Cartesian product  
S x T, with t --- 0 being the no-surprise state where the states are consistent 
with the agent 's  world view, and t = 1 is the surprise state, where events 
unaccounted for in the model occur. The observer is assumed to model 
behavior  according to a conventional uncertainty model which recognizes 
only the t = 0 state. This model is a subset of  the fuller ( though unknown)  
extended uncertainty model. The observer 's  model is embedded  inside the 
extended uncertainty model,  and here we want to assume the world conforms 
to the observer 's  model with all but an arbitarily small probability. We will 
construct the relationship between the observer 's  model and the extended 
uncertainty model using the following definition 

Definition. e Perturbation ; Let e be a positive number.  The model { U, S, 5,/~} 
is an e perturbat ion of the model { U, S, c, p} if: 

(1) There exists a set T with 0 an element of  T such that S = S × T .  
(2) For a in A and s in $, 

c(a, s) = tT(a, (s, 0)), and U(a ,  (s, 0)) = U(a,  s). 

(3) There is a c5, with ~5< e such that for each x in X and s in $, 
/~((s, O)[X = x) > (1 - 6)p(slX = x).  

I f  an extended uncertainty model is constructed as an e perturbat ion of  
the observer 's  model,  then when t = O, the true model will look exactly like 
the observer 's  model,  and furthermore, this will be the case with probabil i ty 
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greater than ( 1 -  e). That  is, the world may almost  always conform to the 
observer 's  model,  the parameters  almost  always are consistent with his 
model. 

Embedding the biologist 's  model inside the extended uncertainty model 
in this way could lead the biologist to persist in following a mis-specified 
model. It may be that the t = 1 events occur  so infrequently that they are 
never observed by the biologist, or they may be observed, but observed so 
infrequently that they are discounted as being irrelevant. The events associ- 
ated with t = 1 may have severe consequences when they do occur, and so 
the e per turbat ion is not insignificant in those terms. But the events are so 
unlikely or infrequent that they may not be considered,  the observer may 
have no empirical  evidence to suggest, in the course of  his observations,  
that his model  is not correct as stated. 

The agent, on the other hand,  may have had sufficient experience to know 
there is some chance the model may fail, but may not know the nature of  
the potential  future failures in enough detail to revise the model to include 
these potential  surprises explicitly. Or, as we discussed with reference to 
the laboratory setting, the agent may view as extended uncertainty that 
which appears  to the biologist to be well-defined, or even non-stochastic.  
An important  point is that past surprises will lead the animal to do more 
than simply update  the model  to take the surprises into account. It will 
lead the animal to change the f ramework of  the model,  to reflect in its 
behavior  an anxiety that further unanticipated events will occur. 

We will show that a recognition of  extended uncertainty as an e perturba- 
tion of the model  held by the agent will restrict the set of  actions. First we 
make the following assumptions and definitions: 

Definition. For each a in A, let m~ = infs U(a, s). 
Definition. For each a in A, let M~ =sups  U(a, s). 
Assumption 1. There exists an M < oo such that supa M~ < M. 
Assumption 2. There exists an ao in A such that for a ~ ao, m~o> ma. 
Assumption 3. m~o = O. 
Assumption 4. There exists a probabili ty distribution q( .  ) defined on S that 
can be interpreted as a prior  distribution. 

Assumpt ion 2 specifies one action, ao, as having the greatest lower bound 
on utility. Assumpt ion 3, which specifies a value for m~0, is not restrictive, 
as we can always translate U to make this assumption hold. The action ao 
may be thought  of  as a general action. 

We can categorize a broad set of  actions according to worst-case loss. 
We do so with the following definition. 
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Definition. W(r). For r > 0 ,  let 

W(r) = {a: sup [e.  q{s: U(a, s) < - e } ] >  r}. 

W(r) can be thought of  as the set of  actions of  risk greater than r. 
We show that for any model the agent may have, we can introduce 

extended uncertainty by way of an e perturbat ion of that model with the 
perturbed model leading to an optimal behavior  rule that restricts itself to 
those actions not in W(r). This will imply an increase in the regularity of  
actions in the sense that fewer actions will potentially be chosen by the agent. 

Theorem 4. Let r and e be positive numbers,  and let ff be in (0, 1). Then 
there is an e perturbat ion of  { U, S, c, p} such that if d is an opt imal  rule 
for the perturbed model,  d(x) is not in W(r) for any x with p(.[X=x)> 
3~q(" ). 

The condition p ( - I X  = x) > 3~q(. ) can be interpreted as saying that know- 
ing X = x gives limited or weak information about  S. This weak information 
leads to a smaller set of  actions being admissible as the optimal  action. The 
behavior  rule can be thought  of  as being coarse in that it is limited to fewer 
actions. While the result here springs from the nature of  information imposed 
on the conventional uncertainty model,  it is closely related to the limitations 
on information arising from extended uncertainty. Extended uncertainty 
can be thought  of  as causing the agent 's  information to be weak. The 
reliability of  the agent 's  information diminishes with the possibility that his 
model is wrong, and the nature of  extended uncertainty is such that this 
unreliability cannot  be fed back to revise or update  the model. 

In the extended uncertainty paradigm, the focus is shifted from the animal 
itself to the description of the environment.  We argue that the essential 
ingredient in leading to regularity of  behavior  is the qualitative nature of  
uncertainty. Namely,  an animal should tend toward more regular behavior  
as the degree of  extended uncertainty increases. As a result, we can explain 
an animal manifesting the apparent  regularity of  behavior  that is consistent 
with global theories of  behavior  in one env i ronmen t - - an  environment  with 
a high degree of  extended uncer ta inty--whi le  not necessarily doing so in 
another  environment  which contains less extended uncertainty. 

We will use the development  of  Theorem 4 as a basis for presenting the 
broader  result that for any conventional model,  there is an extended uncer- 
tainty model that is an e perturbation of  the conventional model  which will 
yield a behavior  rule that is coarse in the strictest sense, e.g. that is constant 
on an infinite subset of  the data. To do so, we first introduce two further 
assumptions.  
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Assumption 5. There exists an a > 0 such that the complement  of  the set 
G~ = { a ~ A: q{s: U( a, s ) < - c ~ } >  a} is finite. 7 

This assumpt ion is motivated by the fact that for a # ao, Ma < M~o = 0, and 
so infers U(a, s )<0.  As a gets smaller, the complement  of  the set G~ gets 
smaller, decreasing down to a singleton, {ao}. The assumption is that as the 
set of  acceptable ac t ions- - the  equivalent to the complement  of  the set of  
actions in W(r) of  Theorem 4 becomes smaller it becomes finite. 

Assumption 6. There exists a 3' in (0,1] such that { x e X : p ( . I X = x ) > -  
3'q(-)} is infinite. 

Under  these two additional assumptions,  we present a corollary to 
Theorem 5. 

Corollary to Theorem 4. For any e > 0, there is an e perturbat ion of  the 
model { U, S, c, p} such that there is an optimal  behavior  rule d for the 
perturbed model  that is constant  on an infinite subset of  X. 

This result is a more structured version of the main theorem of  the paper,  
that an arbitrarily small potential  for surprise, as measured by the e perturba- 
tion, can lead to a behavior  rule that is coarse. The realization of  the 
potential  for a surprise may be thought of  as adding more information to 
the agent 's  model:  Including the recognition that the model may fail in an 
unanticipated way adds information that is beyond the scope of  the conven- 
tional model  as stated. In this context, the result of  the corollary implies 
that more in fo rmat ion- - in fo rmat ion  that leads to uncertainty about  the 
m o d e l - - m a y  lead to more rigid behavior. Or put another  way, having 
information about  what is beyond scope of  model may lead the agent to 
ignore information in the model. The optimal  rule for the agent who has 
the information embodied in the e perturbat ion appears  coarse to the 
observer who does not have or who disregards the potential  for surprise 
states. The agent 's  addit ional  information may make it appea r  as though it 
is ignoring information,  or possibly is responding in a more general,  regular 
way to the stimuli of  its environment.  

6. Conclusion 

Extended uncertainty is related to model mis-specification. The animal 
laboring under  extended uncertainty has an anxiety that its world view is 
incomplete.  This anxiety means any contemplated action must not only be 
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beneficial for its model of  the world, but also must be likely to be beneficial 
given the possible but unexplored perturbations of  that model. Fine-tuned 
or highly specialized actions will generally have fewer benefits if the world 
view of  the animal is violated, and as a result a wider set of  these actions 
will be excluded from the animal's repertoire as extended uncertainty 
increases. The resulting behavior will be coarse; it will appear  to be inflex- 
ible. In failing to make fine adjustments, it will appear  the animal is not 
fully discriminating or following environmental cues. 

The scientist who fails to recognize the extended uncertainty facing the 
animal will find unaccountable rigidity of  behavior. This may lead to a 
perception the animal is behaving suboptimally, or is displaying a regularity 
of  response that suggests its behavior follows global or general rules. 

The necessary and sufficient conditions for a behavior rule to be consistent 
with optimal behavior under  extended uncertainty, presented in section 
2(D), can be verified with only a knowledge of the constrained model. It is 
therefore possible to test whether deviations from apparently optimal 
behavior can be explained by the existence of  extended uncertainty. 

If various environments can be ranked according to the degree of  extended 
uncertainty, then the theory would indicate a tendency for an animal to 
display increasingly coarse behavior as the degree of  extended uncertainty 
increases. Further, the particular coarse behavior displayed should represent 
a strategy which, although possibly not leading to actions that are optimal 
according to the conventional model in any state, give actions which do 
not involve a great loss even in the worst (surprise) state. This ranking of  
environments is possible both in the laboratory and in the naturalistic setting. 

While we have argued the laboratory may intrinsically have extended 
uncertainty, the degree of  that uncertainty can be varied by varying the 
stimulus and reward away from what the animal can anticipate or what the 
animal has previously experienced. The experiments we have discussed that 
lead to experimental neurosis are suggestive of  this approach. 

In the natural setting, the task of discovering and measuring extended 
uncertainty is more difficult, since by its very nature it may remain unrevealed 
to the observer. However, it may be reasonable to assume extended uncer- 
tainty increases as a function of the complexity of  the environment. With 
this assumption, the theory would imply coarser or more generalist behavior 
in more complex and varied environments. For example, the escape mechan- 
ism of the cockroach follows a very coarse rule: the cockroach moves in 
the opposite direction of  the gusts of wind that signal the approach of  a 
predator. This rule ignores information about the environment visual and 
olfactory cues for example--which it would seem an "optimal warning 
system" should take into account. However, the very coarseness of  the rule 
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that will lead it to be suboptimal  for any given model  of  predat ion makes 
it satisfactory for wide range of  unanticipated predators.  And indeed the 
long history of  the cockroach and the varied settings in which it has survived 
suggests this extended uncertainty. By contrast, an animal which has found 
a well-defined and unvarying niche may follow a specialized behavior  rule 
which depends  on the correctness of  its world view. This is not to say its 
environment  may not have a high degree of  conventional uncertainty, but 
the nature of  possible events and their l ikelihood will be well known. Thus, 
some insight into the nature of  adaptat ion and the flexibility of  behavior  
programs may be gained by considering the degree of  extendJ~d uncertainty 
facing the agent, and by looking into how extended uncertainty is correlated 
with the more  apparent  attributes of  the agent 's  environment.  

What  are the attributes of  the environment  that are likely to be related 
to a high degree of  extended uncertainty, and thereby lead to coarse 
behavior?  First, the degree of  extended uncertainty will be related to 
informational  instability where the implications of  cues vary in unantici- 
pated ways, or where new events occur that have no previous counterpart .  
As we have already suggested, this instability will be more likely in a 
complex setting, since there are more parameters  to change. It will also be 
more likely in a dynamic  setting, where change and interaction across 
segments of  the environment  are frequent. Obviously,  complexity and 
change alone do not guarantee even conventional  uncertainty. Over time, 
the complexi ty can be modeled,  and the change may become predictable. 
But in such a setting, the chances for the new and novel increase. Second, 
since coarse behavior  is the result of  the agent moving to a more restricted 
set of  actions, the more distinct the division between specialist and generalist 
actions, and the smaller the set of  general actions, the more likely coarse 
behavior  will be. 

Notes 

tHere we have made the tacit assumption that S is countable and that the 
supremum is actually attained. The state space S is taken to be countable for 
mathematical convenience. The analysis of the paper still applies if S uncountable, 
but then we must worry about the question of measurability. If S is not countable, 
then this problem is replaced with 

E×=xU(~(d(x), s))=sup E×=xU(c(~, s)). 

That the supremum is obtained is fundamental for an optimal rule d to exist, and 
we retain this assumption throughout the paper. 

2The relationship between p(s) and p(s, t]x) may be taken to be either that 
p(s)=p(s,O)/~sp(s,O), or that p(s)=Y.,p(s,t). In the event that s and t are 
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stochastically independent, these two choices are the same. If p(s)  is related to 
p(s, t) by the equation p(s)  = Y~, p(s, t), then p(s, t) = p ( t l s ) p ( s ) .  Then in the exten- 
ded uncertainty model the agent maximizes ~s ~,  U(a, s, t ) p ( t l s ) p ( s ) l X .  For this 
footnote only, we have denoted p(A [x) by simply p(A). 

3 The resulting rule dope(x) must satisfy the condition that dopc(Xl)= dope(x2) 
wherever p ( s l x ~ ) = p ( s l x 2 )  for all s in S, and must depend on the distribution 
dist ( S x T I x  = x) only in the form of dist (SIX = x ). 

4 In particular, let an agent have a utility function Uo(a, s), where a is a control 
variable (an action in the space of actions A), and s is a realization of a random 
variable (s is an element of the state space S). A behavior rule d maps the information 
space X into the action space A. If the agent is an expected utility maximizer, then 
its behavior rule will satisfy the condition that 

E U o ( d ( x ) , s ) p ( s l x ) ~  Uo(a , s )p ( s l x )  
s s 

for any a in A. 
5 We have already mentioned that care must be taken in developing the definition 

of coarse behavior for the particular application. The 0-1 selection rule in foraging 
provides an excellent example of how the model must define the context of coarse- 
ness. At first, it might appear a 0-1 selection rule would be a coarse rule, since it 
only differentiates between two actions, while a rule that chooses among many 
combinations of food types would be less coarse, since it allows for a wider variety 
of food mixes. Any application of a theory requires a careful identification of the 
variables in the theory and their relationship to the variables in the application. In 
the foraging example, the states of nature include a full description of the animal's 
environment, the information the animal receives includes a knowledge of its 
preferences and its position in the environment, and an action is a complete 
specification of the sequence of activities that leads to eating the prey. This will 
include not only the mix of food eaten, but also the procedure for finding the food 
and eating it. For example, the specification of an action as eating wheat and corn 
in a two-to-one ratio is not a complete specification of the action in foraging behavior, 
for it fails to specify how the food was obtained and eaten. When the process of 
finding the food and the effort in moving to it and eating it is included as part of 
the action, it is clear that a coarse behavior rule for foraging is not eating all of one 
food type, but rather is simply eating whatever is immediately available. The action 
of eating whatever is in front of it will lead the animal to a food mix that is as 
variable as the distribution of food in its environment. A less coarse behavior rule 
will be deliberately searching out prey in a mix that deviates from the mix available 
in nature. 

In developing the behavior rule, we must assume all of the behavior rules under 
consideration select actions relative to the physical orientation of the animal. More 
formally, we assume there is a function L from the set of information X into a set 
of orientations Q such that for any of the behavior rules d there exists a function 
fd such that fd ° d = L. Essentially, L(x) gives the orientation of the animal, and the 
behavior rule is defined relative to that orientation. The function L defines a partition 
on the space of information X in the obvious way: X is the disjoint union of the 
sets L-l{y}  as y ranges over the set Q. By assumption, each behavior rule d in the 
set D factors through L, so L is in a sense more coarse than any rule d. 
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For a behavior  rule in D, then, we can define coarseness for foraging behavior  
by the measure 

K ( d )  = sup M ( d ( x t ) ,  d(x2)), 

y~Q 

Xt ~ L-I{y} 

X2 ~ L-l{y} 

where M is any metric on the space of  actions A. (Of  course the value of  K ( d )  
depends on the choice o f  the metric, but K ( d )  = 0 for any one metric on A implies 
K(d)  =0 for every metric on A.) 

6 The utility function might be further specified by the arguments  R(a, (sl, s2)), 
which is a measure of  the encounters  the animal  has with predators when action a 
is chosen and state (s~, s2) occurs, and L(a, (st, s2)), which measures the animal 's  
foraging success if  it adopts action a and state (sl, s2) occurs. Then W(.  ) could be 
expressed as 

W(a, (sl, s2)) = W ' ( R ( .  ), L(" )). 

7Let A , = { a e A :  q{s: U ( a , s ) < - l / n } > l / n } .  Then A,  cAn+t .  If  a is not in 
[.-.J~=l An, then for each n 

1 
q{s: U(a, s ) < - l / n }  < - ,  

rl 

hence 

q{s: U(a, s ) < 0 }  =0 .  

If  for each s in S, q({s}) ~ 0, we must have m~ = moo. Hence,  the complements  o f  
A,  are decreasing down to a singleton {a0}. Unfor tunately ,  this does not  impose 
the condi t ion that for some n, A~, is finite. This we must assume. 
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APPENDIX 

Proof o f  Lemma 1. I f  a is in A(r ) ,  which is n o n e m p t y  by a s sumpt ion ,  then  

U(a, s ) p ( s l x ) +  H(a,  x)>- ~ rp ( s l x )+  K r =  (K  + 1)r. If  a is not  in A ( r -  
e), then ~ U ( a , s ) p ( s l x ) + H ( a , x ) < M + K ( r - e  ). Since M = r + e K ,  for 
a n o t i n A ( r - e ) , ~  U ( a , s ) p ( s l x ) + H ( a , x ) < r + e K + K r - e K  = ( K + l ) r .  

Proof of  Theorem 1. As in the above l emma,  set H ( a ) =  K infs {U(a,  s)}. 
By the above lemma,  we find then that for K = ( M -  r)/e,  the op t imal  rule 

takes its values  on A ( r - e ) ,  which con ta ins  on ly  ao. Thus  the op t imal  rule 
is a cons tan t  func t ion  whose only  value is ao. 

Proof of  Theorem 2. I f  the probabi l i ty  measure  t z ( ' )  is in Qa, then  there 
exits a~ . . .  an posit ive n u m b e r s  s u m m i n g  to one  with 

i=1 

where each xi is in R,. I f  a '  is any  ac t ion  o ther  t han  a, we have 

E [U(a,  s, t ) -  U(a',  s, t ) ] t z (s )p( t l s )  

=Y. ~ [U(a,  s, t ) -  U(a' ,  s, t)]ot,p(slx,)p(tls ) 
s.t  i=1 

= ~. al ~ [U(a,  s, t ) -  U(a',  s, t ) ]p ( s l x , )p ( t l s )>O.  
i=1 s,t 
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I f /~  is in Q.  c~ Qa, where a ~ a ' ,  then 

~[U(a ,  s, t ) -  U(a', s, t)]iz(s)p(t[s)>O 

and 

which equals 
E [U(a', s, t ) -  U(a, s, t)]tz(s)p(tls), 
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as follows: 

U(a, s, O) = Uo(a, s) 

U(a, s, t') = Uo(a, s) 

U(a, s, s) = (fa(s) - (1 - e) Uo(a, s))/ e 

p ( t = O l s ) = l - e  

p ( t=  t ' l s )=Oi f  s #  t' 

p ( t = s [ s ) = e .  

-~,[U(a,  s, t ) -  U(a', s, t)]l~(s)p(tls)>O, 

which is impossible. 
Theorem 2 does not directly provide an observable test to determine if 

a decision rule d is consistent with an extended uncertainty model ,  since 
R~ and hence Q~ depend on the unknown function U(a, s, t). However  
Theorem 2 does suggest a simple modification which does provide a mean- 
ingful test on the observed rule d. 

Let Ra = {x: d(x)= a} and suppose 

k 

~,p( ' lx , )= E fl~P('IYj) 
i = O  j = 0  

where ai > 0, fli > 0, ~ ai = ~ fl~ = 1, d(xi) = a, d(y~) = a ' ,  and a # a' .  Then 
the rule d is consistent with an extended uncertainty model for an agent 
only if whenever  xi or yi occurs the agent is indifferent between a and a' .  

Proof of  Theorem 3. Let Ha be the closed convex hull o f / t a  and the zero 
probabil i ty measure.  I f  Ga and / ~ a  are disjoint then so are Ga and Ha, so 
Ga and Ha are disjoint closed compact  subsets o f  R ~ where n in the number  
of  states in S. ( I f  S is infinite take the w* closure and Ga and Ha are both 
w* compact . )  For each a, there exists a linear functional (w* continuous) 
As and an ra and Sa real numbers  such that 

~a(~)>--ra>so>--~a(V) 
for each /~  in Ga and v in Ha. Since A a ( 0 ) =  0 and 0 is in Ha, ra must be 
positive; thus letting A~ equal (1/ra)~'a, we can find a linear functional Aa 
such that  for each/~ in Ga and v in Ha, A~(/z) -> 1 while Aa(v) < 1. Therefore  
i f / z  is in G~, and a ' #  a, we have A (~)_>1 >Aa , (~) .  For each a, Aa can 
be identified with a function, fa (s), where A~ (/~) = ~,fa(s)l~(s), (or Aa(/~) = 
~fa(s) dl~(s)). Let e be between 0 and 1. We can let T=S©{O}  (where 0 
is assumed disjoint from S) as a set, and we can define U(a, s, t) and p(tls) 
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It follows then that: 

~ .  U(a, s, t)p(slx)p(tls) 
x 1 

= r . fo ( s )p (s  Ix) = Ao[p( .  Ix)]. 
x 

We then find that if d(x) = a and a'  is not equal to a, that 

~,~, g(a,s,  t ) p ( s l x ) p ( t l s ) > - l > ~  S(a' ,s ,  t)p(slx)p(tls) 
s t s t 

so that d is a behavior rule that would have arisen if U(a, s, t) were the 
agent's utility function. 

Proof of Conditions 1 and 2. Condition 1 follows immediately from the 
discussion after Theorem 2. Condition 2 is demonstrated as follows and is 
a consequence of  Theorem 3. Let I = { ( x , y ) :  d(x,y)=O} and let J =  
{(x,y):  d(x, y ) =  1}. We need to show that (*) cannot occur: 

E ot(~,y)Px, y= E [3{~,y)Px,y (*) 
( x , y ) e  I (x,_v)~J 

where 

Ot.(x,y ) ~" 0 f l ( x , y )  :> 0 

E a(~.y)= E fl(.~,y)=l. 
(x, yJe I ( x . y )EJ  

Suppose (*) occurs. Then for each w in {0, 1, 2} 

'~x.,3.,,w(" w) = E [3(x.w)P~,,~(" w) 
( x , w ) e l  ( x , w ) ~ J  

and thus 

E o,(xw)Ox= Y [3(xw)O~,. 
( x , w ) e l  ( x , w ) e J  

Since Qx(0)+ Qx(1) = 1, 

(1) 

(2) 

Y.. acx.w) = Y. fl(x,,~). 
( x . w ) ~ l  ( x , w ) ~ J  

If Y.~ .... )~/a(~,w)#0, let alx, w)=a~x.w)/~,,,w)~a~,~,w) and let /3~x,w)= 
flc~,.,I/Ec.~.w)~J ~(x, wV Then E(x.~}~, a~x.w~Qx = E(~,w)~j/~Ix.~)Q~ with 

1. a~.~,w)---0, fllx, w)>-O and 
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By assumption one of  the following occurs: 
(a) for all x and x' with (x, w) in I and (x', w) in J, x > x', or 
(b) for all x and x' with (x, w) in 1 and (x', w) in J, x < x'. 
If  (a) occurs, then for x and x' with (x,w) in I and (x ' ,w)  in J, 

Qx(1) > Qx,(1) and ~(,~w)~, a~w)Qx(1) > E~x.w)¢j/3~.w)Qx,(1). If  (b) occurs, 
then for x and x' with (x,w) in I and (x',w) in J, Qx(1)<Qx,(1) and 
~t~.~)~f a~.~)Qx(1)<~tx.w),J fli~.w)Q~'(1) • In either event, we have reached 
a contradiction. Hence, ~t~.~)~a~x.~)=0 holds for each w in {0,1,2}, 
Y2= 0 ~(x,~), ~ o~(~.~)= ~(x.y)~ a(~.y)= 0, which is a contradiction, so (*) can- 
not occur. 

Proof of Theorem 4. We construct {/~, 
thus ,q = S × T. Define ~ by ~(a, (s, 0)) 
C ~ increasing function with 

t x h(x)= xM 
r~,e 

Let ~(a, s, 1) be a collection of distinct 
Define ~ by 

~((s, t)lx= x)= [ (1-~)p(slx= x) 
Lep(slx =x) 

Finally, let U be defined by 

=~ U(a,s) i f t = 0  
(](a,(s,t)) thoU(a,s)  i f t = l .  

S, ?, ,6} as follows. Let T = {0, 1} and 
= c(a, s). Let h : R ~ R be a smooth, 

forx>_0 

f o r  x ~-~ - - r .  

objects disjoint from the set c(a, s). 

if t = 0  

i f t = l .  

The utility function is continuous and smooth, and it preserves the relative 
preference ordering of the utility function U( . ,  -). 

It is elementary to verify that { U, S, ~,/~} is an e perturbation of{ U, S, c, p}. 
Let x be in X with p( . IX=x)>-yq( ' )  and let ae W(r). Then 

E ~  U(a, s, t))/~((s, t)lX=x) 
X t 

=Z U(a, s)(1 -e)p(slX = x)+Y. ho U(a, s)ep(slX = x )  
s s 

< - ( 1 - e ) M + e M + e  ~, h°U(a , s )p ( s lX=x)  
s : U ( a , s ) < - a  

where ;t > 0. 
If a is in W(r), then there is a A > 0  such that ;tq{s: U(a, s ) < - ; t } >  r. 

Since ;tq{s" U(a, s) < -A}--- A, it follows that )t is greater than r, and that 
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q{s: U(a, s )<-A}>r/A.  I f  

U(a, s) < -A,  then h o U(a, s) < -AM/(rTe). 

Therefore,  we have 

~ U(a,  s, t))/~((s, t ) lX=x)<M+eTh(--A)q{s:  U(a, s ) < - A }  
t 

and thus 

However,  

~ O(a, (s, t ) )~((s ,  t ) l x  = x)  < M + e7 -AM r = O. 
s t r y e  A 

~ (J(ao(s, t))p((s, t)lX=x)>-O 
X l 

since for each s, U(ao.s)>-O soho U(ao,s)>-O. Thus d (x )  is not in W(r). 

Proof of Corollary to Theorem 4. We first present a iemma. 

Lemma. Let F be a finite nonempty  set and I an infinite set. I f  d is a 
function from I into F, then d is constant on some infinite subset of  L 

Proof. I is the disjoint union of  a finite collection of sets of  the form d-~(f) 
where f is in F. Therefore for at least one f in F, d-~(f) is infinite. 

Proof. The set 

A ~ = { a : q { s :  U ( a , s ) < - a } > a } c  W(a2),  

since if a is in A~ then 

Since A~ c W(a2),  

aq{s: U(a, s ) < - a } >  7 2 . 

W(a2) c c A~ 
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and so W(a2) c is finite; furthermore, ao is in W(a2) c, so W(a2) c is finite 
and nonempty. By assumption {x~ X: p ( - I X  =x)-> yq(.)} is infinite, so 
by applying the Lemma and Theorem 5 we obtain the desired corollary. 
Here A c denotes the complement of A. 


